.1x^2+55x+4000=0

Simple and best practice solution for .1x^2+55x+4000=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .1x^2+55x+4000=0 equation:



.1x^2+55x+4000=0
a = .1; b = 55; c = +4000;
Δ = b2-4ac
Δ = 552-4·.1·4000
Δ = 1425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1425}=\sqrt{25*57}=\sqrt{25}*\sqrt{57}=5\sqrt{57}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(55)-5\sqrt{57}}{2*.1}=\frac{-55-5\sqrt{57}}{0.2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(55)+5\sqrt{57}}{2*.1}=\frac{-55+5\sqrt{57}}{0.2} $

See similar equations:

| 1/2x+2(x+5)=-4(x+1)=1 | | X-7=2x-4 | | 11x+1=-1+x,x | | 19(9-9v)=10(v-10)-5v | | -5x+40=6x-6x-70 | | (2x+5)=(3x-7) | | 48=0.5*6x | | 2/3x-1=-11 | | 26-(2x+3)=2(x+4)+x | | F(n)=312 | | -6+6=-3x+12 | | 5-2m+7m=1+4m | | 1/2x-1=-1/3+x | | 10a-7+9a=-50 | | 3(x+2)=3(x+4) | | 5*46+t=t+86 | | x+x+X+13+5=30 | | 15(15b−7)=3b−9 | | -2(2x+3)=-4(4x | | m-10/6=-4 | | 4x-(3x-2)=16 | | 3(4x+8)=6(2x+4) | | 8k+5=53 | | 10a-7+9a=-52 | | 9x+5x-3x-5=39 | | 48g-20=100 | | (X)=4x-12 | | x/9+8=7/18 | | n-3n/2=1 | | 5(3x+1)=2x+31 | | m·10+m·13=138 | | 72/x=20 |

Equations solver categories